
Setting Up Cosign Clients

March 4, 2003

This presentation was originally given at an Academic Computing Support
Forum (ACSF) meeting at the University of Michigan.

Agenda

• Cosign overview
• Configuring cosign on department web servers.
• Adapting commercial web-based applications to

work with cosign.
• Questions and answer session.

[Most slides in this presentation include
explanatory notes; be sure to make these notes
visible when printing or viewing the slides.]

Cosign Overview

• Cosign is a web single sign on system written by
the University of Michigan Web Services team.

• “ Cosign” is short for for cookie signer.
• Cosign is the successor to cookieserver (1996 –

2003).
• Sessions have both idle and hard timeouts.
• Users can log out of all cosign-enabled web

services by visiting a single URL.

•The cookies that cosign uses do not contain any sensitive information – they
are just random strings. Thus the cookies are not at risk of being “cracked” or
“broken”.

•The cookies are session cookies which are only valid for the length of the
browser session – they are not stored on the disk of the machine running the
web browser.

Cosign Overview

• Cosign client web servers do not need to run
SSL; sniffed cookies will compromise only
the non-SSL-protected service, not the
entire cosign infrastructure.

• Cosign is compatible with common SSL
accelerators and clustering load balancers.

•The cookies used by cosign are not domain cookies. Thus, any web server
can be set up as a cosign client regardless of DNS domain name.

•Wayne Wilson in the UofM Medical School is using cosign with SSL
accelerators and load balancers.

Cosign Overview

• Each cosign client web server runs an
authentication filter module. Currently,
Apache 1.3.x and IIS web servers are
supported. Development for Apache 2.x
and J2EE is underway.

• A compromised cosign client web server
does not represent a compromise of the
cosign system as a whole.

•Note that a cosign client web server can optionally be configured to receive
Kerberos tickets for end users from the central cosign server. If a cosign client
web server that stores user Kerberos tickets is compromised, this is more
severe than a cosign client web server which does not store user Kerberos
tickets being compromised. Thus, cosign client web servers which receive
user Kerberos tickets from the central cosign server should be configured to
meet certain minimum security configuration criteria.

Cosign Overview

• All cosign client web servers use a central
cosign server to authenticate users.

• The central cosign server runs a daemon and
several CGIs.

• The central cosign server for the University
of Michigan is https://weblogin.umich.edu/

•Currently, a campus will have only a single central cosign server. The cosign
design permits multiple central cosign servers which share and replicate state
information for fault tolerance and load balancing purposes, however. Support
for replicated central cosign servers will be added in a future release of cosign.

•The cosign daemon is used both by the CGIs on the central server as well as
by the authentication filter module on the cosign client web servers.

Cosign Overview

• The central cosign server in turn
authenticates users against Kerberos 5.

• Kerberos tickets can be passed back to the
cosign client web servers. Kerberos 4
compatibility and GSSAPI are also
supported.

• “ Friend” support is under development to
permit self-created guest accounts.

Cosign Overview

• Users will be able to authenticate without using
passwords via X.509 / KX.509 (note: this is not
currently enabled on UofM’s production central
cosign server).

• Cosign is ultimately targeted as a component of
the Shibboleth Internet 2 Middleware project.

• More information is available on the cosign home
page: http://www.weblogin.org/

•Users can authenticate to cosign via X.509.

•Users can also do KX.509 retrieval of junk certificates, although this runs
entirely on the user’s machine.

•Cosign will also support KCT proxy retrieval of kerberos tickets using an SSL
handshake.

•Note that X.509, KX.509, and KCT proxy retrieval are all independent and
separable.

•Bill Doster of ITCS at the University of Michigan has successfully used
cosign as a Shibolleth origin.

Configuring Cosign on
Department Web Servers

• We’ ll demonstrate how to install and
configure cosign on a client web server to
protect stand-alone CGIs, static web pages,
ASPs, and so on.

• The demonstration is on an LSA web server
running Apache 1.3.26. The server is a Sun
Netra T1 AC200 running Solaris 8 in 64-bit
mode.

•The Solaris web servers for the College of Literature, Science, and the Arts
(LSA) at the University of Michigan are not set up in a standard way. Thus,
some of the commands that follow are specific to the LSA environment, and
installing cosign is made more difficult by the “ non-vanillia” nature of the web
server machine. Any LSA-specific commands will be noted and the normal,
standard commands will also be given.

Configuring Cosign

• Get and unpack the software (check http:
//www.weblogin.org/ for the latest version):

mkdir /var/tmp/cosign-build
cd /var/tmp/cosign-build

wget http://www.umich.edu/~umweb/downloads/
 cosign-0.9.3.tar.gz

md5 cosign-0.9.3.tar.gz

tar zxf cosign-0.9.3.tar.gz

cd cosign-0.9.3

•Check http://www.weblogin.org/ to be sure that 0.9.3 is still the latest version
of cosign before running the commands above.

•Be sure to verify that the MD5 fingerprint of the file you download matches
the MD5 fingerprint given on the web page.

Configuring Cosign

• Run the “ configure” program. “ configure” will
examine your system to figure out how to compile
cosign. On most systems, we’ d just be able to
type:

./configure

• For our system, “ configure” needs some help to
figure out some non-standard things about the
environment.

• “ ./configure” should just work on most systems. It’ s a bug in cosign if
“ configure” fails on ordinary, vanillia, systems.

•Typing “ ./configure –help” will show you all of the possible command line
options to configure. Additional information is also available with the
documentation that comes as a part of the cosign source code distribution
(particularly the README file).

Configuring Cosign

• Run the “ configure” program:

env CC="cc -fast -xtarget=generic64" CFLAGS="-v" \
 LDFLAGS="-L/opt/lib/sparcv9 -R/opt/lib/sparcv9" \
 ac_cv_path_install="/usr/ucb/install" \
 ./configure \
 --prefix="/opt/packages/cosign-0.9.3" \
 --libdir="/opt/packages/cosign-0.9.3/lib/sparcv9" \
 --enable-shared --disable-static \
 --with-ssl="/opt" --with-apache-
apxs="/opt/bin/apxs"

•The configure command shown does not enable Kerberos; if a cosign
protected service needs to receive a Kerberos ticket granting ticket for the user
from the central cosign server, add the option “ —enable-krb” .

•The environment variables in the “ env” command are to get configure to use
the Sun compiler in preference to gcc, to produce 64-bit executables, and to
look in the right places for 64-bit libraries (64 and 32 bit libraries are stored in
different directories under Solaris).

•ac_cv_path_install is because configure finds /usr/vice/bin/install in our path
before /usr/ucb/install. /usr/vice/bin/install is a part of the AFS client software
and is not a BSD-compatible install program.

•“ — prefix” tells configure where to install cosign (it installs by default in
/usr/local, which is used for other purposes in LSA); “ --libdir” is because we're
producing 64-bit libraries which need to be installed separately from the 32-bit
ones.

• “ --enable-shared” and “ --disable-static” produce a shared-only version of
libsnet. LSA's Apache doesn't like linking the static version of libsnet into the
filter unless it's compiled with -KPIC. Using the shared libsnet works around
this problem. (libsnet is a high-level networking library for implementing
networked services; it includes TLS support. Besides cosign, libsnet is also
used by other software packages, including radmind).

• “ --with-ssl” and “ --with-apache” help configure find things that we've got
installed in non-standard places in the LSA environment.

Configuring Cosign

• Build the cosign authentication filter:

make

Configuring Cosign

• Normally, installing cosign is simple:

make install

• However, due to the specialized
environment on the LSA webservers, we’ ll
need to install cosign by hand.

Configuring Cosign

• Install the libsnet library (normally libsnet is created as
a static library that does not need to be installed separately, but we’ re
using a special Apache DSO setup on this system, so…)

cd libsnet
make install
cd /opt

makelinks --prefix="/opt" packages/cosign-0.9.3
chown -R bin:bin /opt/packages/cosign-0.9.3
chmod -R ugo+rX /opt/packages/cosign-0.9.3

* “ makelinks” is a symbolic link management script used in LSA which is
similar to GNU Stow. It will create symlinks in /opt/lib/sparcv9 for all files in
/opt/packages/cosign-0.9.3/lib/sparcv9. LSA’ s Apache then looks for shared
libraries under /opt/lib/sparcv9.

Configuring Cosign

• Install the cosign authentication filter (normally
“ make install” would run “ apxs” to install this, but installing via apxs
does not work in our environment because our httpd.conf file is in a
special location):

cd /var/tmp/cosign-build
cd cosign-0.9.3/filters/apache
cp mod_cosign.so /opt/www/apache/libexec
chown root:other /opt/www/apache/libexec/*
chmod 755 /opt/www/apache/libexec/*

Configuring Cosign

• This completes the work normally done by
“ make install” .

• The steps on the following slides are in
addition to what is done by “ make install”
and always need to be done by hand.

Configuring Cosign

• Cosign expects to store cookies in the directory
“ /var/cosign/filter” . This directory must be owned
by the user the web server runs as – in our case,
user “ http” .

mkdir /var/cosign
chown root:other /var/cosign
chmod 755 /var/cosign

mkdir /var/cosign/filter
chown http:other /var/cosign/filter
chmod 700 /var/cosign/filter

•Be sure to change “ http” above to be the user as which the web server runs.

Configuring Cosign

• Cosign needs to know about additional
Certificate Authorities (CAs), in particular
the UMWeb CA. If you do not already have
a directory to store CA information, create
one:

mkdir /opt/www/etc/ssl.ca
chown root:other /opt/www/etc/ssl.ca
chmod 755 /opt/www/etc/ssl.ca

•The directory does not need to be called “ ssl.ca” , you can name it anything
you wish.

Configuring Cosign

• Install the CA certificates that come as a part of
the cosign source code distribution (UMWeb,
Entrust, Verisign, and RSA Data Security certs):

cd /var/tmp/cosign-build/cosign-0.9.3

cp CAcerts/*.pem /opt/www/etc/ssl.ca
cd /opt/www/etc/ssl.ca

chown root:other *.pem
chmod 644 *.pem
c_rehash /opt/www/etc/ssl.ca

•The UMWeb CA information is necessary to verify the identity of the central
cosign web server; the other CAs are not as necessary.

•The “ c_rehash” command is a part of the OpenSSL package and is used to
create symbolic links with hashed values of the CA certificates.

Configuring Cosign

• The cosign client web server and the central
cosign server need to be able to verify each
other’ s identity. Send a Certificate Signing
Request (CSR) for your web server to the
UMWeb team and they will send you back a
cosign certificate.

• In this example, we send the
/opt/www/etc/ssl.csr/server.csr file.

•The CSR you send can be the same one that you used to get a commercially
signed SSL certificate from Versign, Entrust, or another commercial company.
If you use OpenSSL, you can generate a CSR by running

openssl genrsa –out server.key 1024
openssl req –new –key server.key –out server.csr

(you’ ll need to install the private key file server.key if you generate a CSR this
way, of course).

Configuring Cosign

• The UMWeb team also needs a service
name for the service provided by your
cosign client web server. You should email
a requested service name along with the
CSR.

• The service name might be shared by
multiple cosign client web servers all
providing the same web based service.

Configuring Cosign

• Note that the service name you choose will
appear as a part of the names of the cookies
that cosign sets in users’ browsers.

• In this example, we’ ll request “ lsa-test” as a
service name. Cosign service cookies for
this service will therefore be named
“ cosign-lsa-test” .

Configuring Cosign

• Install the cosign client certificate sent to
you by the UMWeb team. This cert is
normally installed in the same directory as
any other certificates your web server has:

cd /opt/www/etc/ssl.crt
cp /path/to/saved/cert cosign.crt
chown root:other cosign.crt
chmod 600 cosign.crt
make clean ; make # or run c_rehash

•The makefile in this directory is one that is installed by mod_ssl for Apache in
order to manage certificates. Any other way of recreating the certificate
hashes, such as the OpenSSL c_rehash program, can also be used.

Configuring Cosign

• Optionally, you can check to verify that the
UMWeb CA and cosign certificate are both
set up correctly. This can avoid problems
later; if the command below does not work,
cosign will not work either.

openssl verify -verbose \
 -CApath /opt/www/etc/ssl.ca \
 /opt/www/etc/ssl.crt/cosign.crt

Configuring Cosign

• Add the necessary cosign configuration
directives to your httpd.conf file.

• Verify that the following two lines were
added to httpd.conf by apxs when you ran
“ make install” ; add them if they are not
there.

LoadModule cosign_module libexec/mod_cosign.so
AddModule mod_cosign.c

•Since in LSA we did not run “ make install” for cosign, these lines have to be
added manually.

Configuring Cosign

• Add the following lines to the section defining
your SSL-protected virtual host configuration:

CosignHostname weblogin.umich.edu
CosignRedirect https://weblogin.umich.edu/
CosignPostErrorRedirect https:
//weblogin.umich.edu/post_error.html
CosignService lsa-test
CosignCrypto /opt/www/etc/ssl.key/server.key
/opt/www/etc/ssl.crt/cosign.crt
/opt/www/etc/ssl.ca

CosignProtected On

•Change the service name above to be the service name you chose or were
assigned.

•Also adjust the path to the SSL server key, the path to the cosign certificate,
and the path to the CA info directory as necessary in the CosignCrypto
directive.

•The cosign configuration directives should be in the main part of the virtual
host configuration, not in a Directory or Location context.

Configuring Cosign

• Add the following line to the Directory
stanza(s), Location stanza(s), and/or
.htaccess file(s) for the resources you want
to protect with cosign:

AuthType Cosign

•The AuthType directive may not be necessary depending on how you have
your web server configured, but it shouldn’ t hurt. In LSA we use multiple
authentication filters and so this directive is necessary to distinguish between
them.

Configuring Cosign

• Restart the web server to get the changes to
httpd.conf to take effect:

/etc/init.d/httpd stop
/etc/init.d/httpd start

Configuring Cosign

• For this example, we just protected a simple
stand-alone CGI:

https://latimer.lsait.lsa.umich.edu/test/printenv

•Note that the above URL was set up for the presentation and may no longer
work. It was a script that printed the date and time, provided a link to the
logout CGI on the cosign server (https://weblogin.umich.edu/cgi-bin/logout),
and then dumped its environment variables.

•When going to the URL above, the cosign authentication filter on the client
web server (latimer) will notice that you are not authenticated and redirect you
to the login CGI on the central cosign server. The login CGI will see that you
don’ t have a cosign cookie and display a “ splash screen” saying that you need
to log in by going to https://weblogin.umich.edu; it will also provide a link to
this URL. When you follow the link, you will receive a form asking for your
username and password. After you submit the form, cosign will then
authenticate you and redirect you back to the URL on the client web server
from which you originally came.

•In the output of the CGI above, the AUTH_TYPE environment variable will
be set to “ Cosign” . Scripts can use this to verify that cosign authentication
ocurred. The REMOTE_USER variable gives the identity of the authenticated
user, and the REMOTE_REALM variable indicates which Kerberos realm the
central cosign server authenticated the user against.

Adapting Commercial
Web-Based Applications to

Work with Cosign

• The difficulty of getting a commercial web-based
application to work with cosign can vary greatly depending
upon what assumptions are made by the commercial
application.

• Educating the software vendor about cosign and getting
their “ buy in” is very important and can greatly increase
the chances of successfully adapting the commercial
application to work with cosign.

Commercial Applications

• The simplest scenario is if the commercial web-based
application already relies upon the web server for
authentication. For example, an application might use
Apache’ s mod_auth authentication filter, .htpasswd files,
and use the REMOTE_USER environment variable to
determine the identity of the authenticated user.

• In this case, no changes need to be made to the application;
just change the web server configuration to replace the
existing authentication directives (e.g., mod_auth) with the
corresponding cosign authentication directives.

Commercial Applications

• Unfortunately, many web based applications will provide
their own authentication code rather than leveraging the
authentication capabilities of the underlying web server.

• Although cosign will not conflict with this type of
application, users would be asked to authenticate twice,
once to cosign and once to the application, defeating the
purpose of cosign as a web single sign on mechanism.

• Thus, these applications should be modified to disable
their internal authentication mechanism.

• The following strategy should work with both Apache as
well as IIS.

Commercial Applications

• Basic strategy:
– SSL-protect the entire application (optional but

recommended for higher security).
– Set up and configure cosign normally to protect all

URLs used by the application as we did in the demo.
– Modify the application’ s login web page to get the

user’ s identity from the REMOTE_USER environment
variable rather than from an HTML form field. After
“ injecting” our own value at this point, we allow the
application to keep track of it from then on via its own
internal mechanisms.

Commercial Applications

• Basic strategy:
– Anywhere the application uses an HTML form field to

prompt for a password (the application’ s login page and
elsewhere), change the type of the password form field
to “ hidden” and give it a dummy value. This will
prevent the user from being prompted for their
password by the application. Any authentication
related text displayed by the application (e.g., “ enter
your password below”) should also be modified or
deleted.

•This is just a suggested strategy. It has the advantage of minimizing the
number of changes to the commercial application’ s code. Other strategies are
possible – for example, eliminating the HTML form field, or getting rid of the
application’ s login page entirely.

Commercial Applications

• Basic strategy (continued):
– Modify any authentication checks performed by the

application so that they unconditionally succeed. Very
often, there will be a single authentication function
called by all of the application’ s web pages which is
easy to modify. This function will continue to receive a
dummy value for the user’ s password from the hidden
form fields, but rather than checking the “ password” the
commercial application’ s authentication function will
be modified to simply ignore it.

Commercial Applications

• Basic strategy (continued):
– Leave any authorization checks alone – for example, in

addition to verifying the user’ s password, the
application’ s central “ authentication” function may also
check to see if the user is in a local database, and it
should continue to deny access to any user who is not in
the database.

Commercial Applications

• Basic strategy (continued):
– Optionally, modify the application’ s logout web page to

redirect to the cosign logout CGI (
https://weblogin.umich.edu/cgi-bin/logout) after doing
any application-specific cleanup. Or you may want to
have the application’ s logout button log the user out of
the application only, and provide a second logout
button to log the user out of both the application and
cosign together.

* It’ s not possible (or meaningful) to have cosign log the user out of a single
cosign protected service – since the user still has the cosign cookie used for all
services (named “ cosign”), if they re-visit any page of the service, they will
automatically be granted another cosign service cookie (e.g., “ cosign-lsa-test”)
without being asked to re-authenticate again. This is the whole point of cosign
as a web single sign on technology. Therefore it’ s useful to provide two logout
buttons – one which just performs any actions the commercial application
needs (checking in licenses, deleting temporary files on the web server, etc.)
and a second button which performs the same action but also redirects the user
to the central cosign server logout URL which will destroy their cosign
credentials for all cosign-enabled services (note that cosign won’ t actually
perform service-specific logout actions such as checking in licenses for these
services – it merely destroys the cosign credentials used to access the service).

Commercial Applications

• If a user accesses a cosign protected web page
before authenticating to cosign, cosign will send
them to a “ splash screen” which will inform them
that they need to authenticate. The purpose of this
is to allow the user to more easily verify that they
are providing their password to the central cosign
server (as opposed to some other server) and
prevent spoofing attacks. This is called “ entering
from the side” .

Commercial Applications

• A user can avoid the splash screen by authenticating to
cosign before attempting to access a cosign protected
service. This is known as “ entering from the top” .

• Optionally, to provide a smoother user experience, you
may want to use URL rewriting to send the user to the
cosign login CGI when they access the commercial web
based application. If they are already authenticated, they
will receive an “ authentication succeeded” message; if not,
they will get the cosign login screen directly, avoiding the
splash screen. Your URL rewriting rule can provide the
cosign login CGI with a URL, such as the URL for the
application’ s login page, and cosign will redirect the user
to this URL after authenticating them.

Case Study

• FootPrints is a commercial web based help desk /
trouble ticket application from UniPress software (
http://www.unipress.com).

• FootPrints version 5.5 does its own authentication
via CGIs. The CGIs check user names and
passwords against either an internal database, the
Unix /etc/passwd and /etc/shadow files, a
Windows NT domain controller, or an LDAP /
Active Directory server.

Case Study

• FootPrints is written mostly in Perl and hence was
easy to modify – it is not a “ black box” ; this was a
factor in LSA’ s purchasing descision since LSA
wants all web based applications to integrate into
the University’ s cosign environment.

• The FootPrints vendor, UniPress software, is open
to new ideas and responsive to customer needs,
which made adding support for cosign to
FootPrints much easier.

Case Study

• Working with UniPress, LSA added a fifth
authentication type to FootPrints: web server
authentication, where FootPrints relies upon the
web server to correctly authenticate the user
before any page is served or CGI is invoked. This
not only enables FootPrints to use cosign, but also
enables it to use any other web server
authentication filter which other customers may
want to use.

* Pitching the proposed change to the vendor as “ adding support for web
server based authentication” rather than “ adding support for cosign” helped get
the vendor to agree to the change since it is something that could then be useful
to a broder customer base.

Case Study

• We followed the basic strategy outlined earlier for
adapting commercial web based applications to work with
cosign.

• Fully integrating FootPrints with cosign required changes
to only 139 lines of Perl code (the total size of the patch to
make these changes is 481 lines). This is a minor change,
considering that the total size of FootPrints is over 327,000
lines. Aproximately half of the changes were purely
cosmetic – hiding username and password form fields from
the user and changing explanatory text.

•Of course, it took a while to learn enough about the internals of FootPrints to
determine which lines needed to be changed.

Case Study

• UniPress software has accepted the “ web server
based authentication” patch, and this functionality
will be included as a standard feature in the next
major release of FootPrints later this year.

Questions?

